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Abstract

In this paper, we explain Goldman’s parameterization of the deformation space of convex real projective
structures on a pair of pants. We have also replaced some of the more abstract parts of his proof of the
parameterization with more concrete arguments from projective geometry.
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1 Introduction

The purpose of this paper is to explain Goldman’s parameterization of the space of properly convex RP2
structure on a pair of pants. More precisely, let C = {(λ1, τ1, λ2, τ2, λ3, τ3, s, t) : (λi, τi ∈ R), s, t ∈ R}. and we
will parameterize the space of convex RP2 structures on S by C.
The strategy to do so is to construct two intermediate sets, A and B which are defined as follows.
Let Ã denote the set of pairs (Ω, ρ), so that Ω ⊂ RP2 is properly convex, ρ : Γ→ PGL3(R) is a homomorphism,
and the following holds:

• ρ(Γ) ⊆ Aut(Ω),

• ρ(A), ρ(B), ρ(C) lie in Hyp+,

• An axis of ρ(A), ρ(B), ρ(C) lies in the boundary of Ω,

• ρ(A−) < ρ(A+) < ρ(B−) < ρ(B+) < ρ(C−) < ρ(C+) < ρ(A−) in the cyclic order on ∂Ω.

We denote A as Ã�PGL3(R), where g(Ω, ρ) = (gΩ, gρ(·)g−1) for some g ∈ PGL3(R).

B̃ to be the set {(H,A,B,C) : H ⊆ RP2 is a properly convex hexagon, A,B,C ∈ PGL3(R) such that

• A · 41 = 42, B · 42 = 43, C · 43 = 41

• CBA = Id

• A,B,C are diagonalizable with positive eigenvalues.}

Define B = B̃�PGL3(R), where g(H,A,B,C) = (g ·H, gAg−1, gBg−1, gCg−1) for some g ∈ PGL3(R).

By standard topological arguments, the space of convex projective structures on a pair of pants is in bijection
with A. We establish a bijection between A and B, and a bijection between B and C. In Goldman’s paper, his
proof that A and B are in bijection uses some abstract results from the theory of geometric structures. Our
proof uses more concrete arguments involving positivity of flags.
The rest of the paper is structured as follows. In Section 2, we give a brief review of real projective geometry.
In particular, we define properly convex domains, as well as the cross ratio and triple ratio. Then in Section
3, we prove the Goldman parameterization.
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2 The real projective plane

In this section, we define the real projective plane and explain some of its key features. We will also define the
notion of a properly convex domain, and use it to define convex RP2 structures on a pair of pants. Finally, we
will introduce two projective invariants, namely the cross ratio and the triple ratio.

2.1 RP2

The real projective plane RP2 is the space of all lines through the origin in R3. We can observe that for any
non-zero vector v in R3 and for any non-zero real number k, both v and kv span the same line ∈ R3. Hence,

RP2 can be regarded as a quotient space, R
3\{0}�R×, where R× = R\{0} and R× acts on R3 by scaling. We

used the notation [v] to represent the point RP2 corresponding to the line in R3 spanned by the vector v. In
RP2, we have a natural notion of lines. Every line in RP2 is a collection of lines that lie in a plane through
the origin in R3.
Given any space, it is a natural question to ask what is its automorphism group. We will now describe
Aut(RP2). Recall that GL3(R) is the group of 3 × 3 invertible matrices of real numbers, which acts on R3 by
linear transformations. Let PGL3(R) denote the set of projective classes of matrices in GL3(R), i.e. PGL3(R)

= GL3(R)�R×, where R× acts on R3\{0} by scaling. The linear GL3(R) action on R3 induces a natural

PGL3(R) action on RP2, which we refer to as projective transformations. Also, PGL3(R) is isomorphic
to SL3(R), a matrix subgroup of GL3(R) with determinant = 1. Explicitly, every point in PGL3(R) is a
projective class of matrices, which has a unique representative that lies in SL3(R). The bijection between
PGL3(R) simply identifies every point in PGL3(R) with this representative in SL3(R).

RP2 is a two-dimensional manifold, so at every point in RP2, it locally resembles a R2. We refer to these
planes as affine charts.

Definition 2.1 (Affine Chart). An affine chart in RP2 is the complement of a line in R3.

As an affine chart is RP2\ a line ∈ RP2, we can regard that line as a plane p in R3. We can choose another
plane p’ in R3, whereby p needs to be parallel to p, such that it does not intersect the origin. Every line
through the origin in R3 that does not lie in p will intersect p’ at a unique point. This defines a bijection
between any affine chart of RP2 with R2.

We choose an affine chart that contains the following three points,

0
0
1

 ,
0

1
0

 and

1
0
0

. These points correspond

to the coordinate axes in R3.

Figure 1: Geometrical interpretation of RP2 on an affine chart

In Figure 2, the 3 black projective lines correspond to the xy, yz and xz plane in R3. These projective lines
split RP2 into 4 regions, where are represented by different colours in Figure 2.

The centre white region is
{[x, y, z] ∈ RP2|x > 0, y > 0, z > 0},
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the orange region is
{[x, y, z] ∈ RP2|x > 0, y > 0, z < 0},

the green region is
{[x, y, z] ∈ RP2|x > 0, y < 0, z > 0}

and the blue region is
{[x, y, z] ∈ RP2|x < 0, y > 0, z > 0}

A projective transformation which fixes the three vertices of the white triangle,

0
0
1

 ,
0

1
0

 and

1
0
0

 is repre-

sented by a diagonal matrix M in SL3(R). If all the eigenvalues of M are positive, the transformation will
leave all triangles invariant.

On the other hand, if the eigenvalues of M are not all positive, then two of the three eigenvalues must be
negative, and the other has to be positive. In that case, all four regions will be interchanged.

For example, the matrix

1 0 0
0 −1 0
0 0 −1

 will cause the blue region to interchange with the centre region and

the green region to interchange with the orange region. The matrix

−1 0 0
0 −1 0
0 0 1

 will cause the orange

region to interchange with the centre region and the green region to interchange with the blue region. The

matrix

−1 0 0
0 1 0
0 0 −1

 will cause the green region to interchange with the centre region and the orange region

to interchange with the blue region. In particular, if a projective transformation is to fix the three vertices of
a triangle, and maps the triangle to itself, then it has to have only positive eigenvalues. This motivates the
definition.

Definition 2.2 (Hyp+). Consider a matrix A ∈ SL3(R). A is said to be hyperbolic if it has 3 distinct real
eigenvalues and A is positive hyperbolic if it has 3 distinct real positive eigenvalues. We denote the set of
positive hyperbolic elements of SL3(R) by Hyp+.

Recall that, h, g ∈ PGL3(R) are said to be conjugate if ∃k ∈ PGL3(R) such that h = kgk−1. A ∈ Hyp+ is
conjugate in SL3(R) to a diagonal matrix with positive eigenvalues.

Suppose A ∈ SL3(R). We define λ(A) to be the real eigenvalue of A with the smallest absolute value and τ(A)

to be the sum of the other two eigenvalues. Thus if A ∈ Hyp+ is conjugate to the diagonal matrix

λ 0 0
0 µ 0
0 0 ν


with λµν = 1, 0 < λ < µ < ν then λ(A) = λ, τ(A) = µ+ ν.

Proposition 2.3 (R). Let A ∈ Hyp+. Then, (λ(A), τ(A)) ∈ R, where R is defined to be the set {(λ, τ) ∈
R2 | 0 < λ < 1, 2√

λ
< τ < λ+ λ−2}.

Proof. Let A ∈ Hyp+, let 0 < λ < µ < ν be the eigenvalues of A. Observe that 0 < λ < 1.
Since λµν = 1, µ = 1

νλ .

dτ

dν
=
d( 1
λν + ν)

dν

= 1− 1

λν2

Since λµν = 1 < λν2, the derivative is positive. So, we can increase ν and decrease µ to increase τ and vice
versa. We can obtain the supremum by approximating µ to λ and obtain the infimum by approximating µ to
ν. For the supremum, µ is approximately λ and ν = 1

λ2 , so τ = λ+ 1
λ2 . For the infimum, µ is approximately

ν, so τ = 2√
λ

.

2.2 Properly convex domain

In this subsection, we want to define what a properly convex domain means. This allows us to establish a
bijection between the deformation space of convex real projective structures on a pair of pants to a proper
convex domain in RP2.
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Figure 2: Geometrical interpretation of pair of pants
Taken from Wikipedia, Pair of pants (mathematics)

Definition 2.4 (Properly convex domain). A properly convex domain is an open set, ∀ a, b in the open set,
there exist a projective line segment between a and b which will also lie in the domain. Furthermore, its closure
lies in the affine chart.

Suppose Ω ⊆ RP2. Let Γ =< A,B,C |CBA > where {A, B, C} is the generating set of Γ and CBA is the
relation.

If A lies in Hyp+, A will have 3 distinct positive eigenvalues. The eigenvector with the smallest eigenvalue will
correspond to the repelling fixed point of A and the eigenvector with the biggest eigenvalue will correspond to
the attracting fix point of A. Any one of the two projective line segments between the attracting and repelling
fix points of A is the axis of A. Let Ã denote the set of pairs (Ω, ρ), so that Ω ⊂ RP2 is properly convex,
ρ : Γ→ PGL3(R) is a homomorphism, and the following holds:

• ρ(Γ) ⊆ Aut(Ω),

• ρ(A), ρ(B), ρ(C) lie in Hyp+,

• An axis of ρ(A), ρ(B), ρ(C) lies in the boundary of Ω,

• ρ(A−) < ρ(A+) < ρ(B−) < ρ(B+) < ρ(C−) < ρ(C+) < ρ(A−) in the cyclic order on ∂Ω.

We denote A as Ã�PGL3(R), where g(Ω, ρ) = (gΩ, gρ(·)g−1) for some g ∈ PGL3(R).

Remark 2.5. {Convex projective structures on pair of pants} ↔ A by standard topological arguments.

2.3 General position

Given 4 points in RP2, these 4 points are considered to be in general position if no 3 or more points lie on a
projective line. This allows us to state Lemma 2.6, which we will use later.

Lemma 2.6. Let A, B, C, D and A’, B’, C’, D’ be two quadruple of points in general position. There exist a
unique projective transformation in PGL3(R) that sends a, b, c, d to a’, b’, c’, d’ respectively.

Proof. The strategy is to find a projective transformation that sends A, B, C, D to A”, B”, C” and D”

respectively, where a”, b”, c”, d” are the respective vector representatives of A”, B”, C”, D” and a” =

1
0
0

,

b” =

0
1
0

, c” =

0
0
1

 and d” =

1
1
1

. For the same reasons, there is a projective transformation that sends

A’, B’, C’ and D’ to A”, B”, C” and D” respectively, so there will be a composite mapping from A, B, C and
D to A’, B’, C’ and D’ respectively.
Let a, b, c, d be the respective vector representatives of A, B, C, D. Since a, b, c form a basis of R3, d is a
linear combination of a, b, c, i.e. d = αa+ βb+ γc, where α, β, γ ∈ R.

Let ḡ ∈ GL3(R), be the linear map defined by ḡ · a =

 1
α
0
0

 , ḡ · b =

0
1
β

0

 and ḡ · c =

0
0
1
γ

 and define

g ∈ PGL3(R) to be the projective class of matrices containing ḡ. It is clear that g·A = A”, g·B = B” and g·C
= C”.
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Observe that ḡ · d =

1
1
1

, so g·D = D”.

Next, we show that g is unique.

Suppose g′ is a projective transformation that has a representative g′ in GL3(R), so g′ ·a =

k′0
0

 , g′ ·b =

0
l′

0


and g′ · c =

 0
0
m′

, g′ · d =

r′r′
r′

. Then,

αkβl
γm

 =

1
1
1

 =

αk′βl′

γm′

.

This implies that k = k′ = 1
α , l = l′ = 1

β ,m = m′ = 1
γ . Therefore, the mapping is unique.

2.4 Dual space

In this subsection, we want to define the dual of RP2. With the notion of the dual space, we can construct
the triple ratio.
The dual of R3 is denoted as (R3)∗. (R3)∗ is defined to be {linear maps from R3 → R}. The dimension
of (R3)∗ is 3 and every non-zero element in the dual space has nullity 2. Hence, its nullspace is a plane
in R3 through the origin. We can observe that (R3)∗ is a three-dimensional vector space as it satisfies the

following properties: Suppose L1, L2 ∈ (R3)∗, where L1 :

xy
z

 7→ ax+by+cz, L2 :

xy
z

 7→ a′x+b′y+c′z, then

• L1 + L2 :

xy
z

 7→ (a+ a′)x+ (b+ b′)y + (c+ c′)z

• kL1 :

xy
z

 7→ kax+ kby + kcz

Given that the basis for R3 is e1, e2 and e3, the dual basis for (R3)∗ would be e∗1, e
∗
2 and e∗3, where

e∗1 : e1 → 1, e2 → 0, e3 → 0

e∗2 : e1 → 0, e2 → 1, e3 → 0

e∗3 : e1 → 0, e2 → 0, e3 → 1

Similarly, the dual of RP2 is denoted as (RP2)∗. (RP2)∗ is defined to be (R3)∗\{0}�R×. Since a plane in R3

is equivalent to lines in RP2, (RP2)∗ is equivalent to lines in RP2. As RP2 is represented as


ab
c

, where

every point in (RP2)∗ can be represented as {[a, b, c]}

Remark 2.7. There is a bijection between points in (RP2)∗ and lines in RP2, where {points in (RP2)∗} ↔
{lines in RP2}. Also, there is a bijection between lines in (RP2)∗ and points in RP2, where {lines in (RP2)∗}
↔ {points in RP2}.

2.5 Cross Ratio

In this subsection, we want to define the cross ratio and explain some of its key features. This is an important
tool in projective geometry to help us establish the parametrization of convex real projective structures on a
pair of pants.
The value of the cross ratio is a number that associated with 4 points on a projective line.

Definition 2.8. Let A, B, C, D be four pairwise distinct points in RP2 that lie in a projective line l. Choose
an affine chart containing A, B, C, D, and choose an orientation on l. In R3, A,B,C,D correspond to four
lines through the origin that lie in a plane, which corresponds to l. The choice of affine chart corresponds to
a plane P in R3 that does not intersect the origin, but intersects the four lines. Choose vector representatives

a, b, c, d of A, B, C, D whose forward endpoint lies in the plane P. Then define C(A,B,C,D) = acdb
abdc

. The

four quantities ac, db, ab, dc are signed distances measured in the Euclidean metric in R3, where the sign is
determined by the direction of the projective line l.
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Remark 2.9. While the sign of each of the four terms depend on the direction of the projective line, the value
of cross ratio does not.

Lemma 2.10. The value of the cross ratio does not depend on our choice of affine chart.

Proof. Given 4 collinear points A, B, C, D on an affine chart. We can regard them as lines in R3, which cuts
through the origin. The affine chart contains A, B, C, D if and only if as a plane in R3, it intersects the four
lines in R3 corresponding to A, B, C, D. As shown in Figure 3, we can choose the red or blue or green line as
our affine chart. With every selection of our affine chart, we will have 4 points of intersections, which we can
take as the vector representatives of A, B, C, D used in the definition of the cross ratio above. For our proof,
we shall use the red and blue line. Let o be the origin,

acdb

abdc
=

ac
oa
bc
ob

oa

ob

bd
ob
ad
oa

ob

oa
(∗)

=
sin aoc
sin aco
sin boc
sin bco

sin bod
sin bdo
sin aod
sin ado

=
sin aoc

sin boc

sin bod

sin aod
(sin(θ) = sin(π − θ))

=
sin a′oc′

sin b′oc′
sin b′od′

sin a′od′

=
a′c′d′b′

a′b′d′c′

(∗) There would be an even number of negative sine value and positive sine value, hence the negative sign will
cancel one another out, thus the cross ratio will be the same. Without loss of generality, we remove all minus
sign.

Figure 3: Different permutation of cross ratio

Different permutations of the 4 unique points can produce different values of the cross ratio. There are 4! =
24 ways to permute. Properties of cross ratio are as follows:

1. C(A,B,C,D) = C(D,C,B,A)

2. C(A,B,C,D) = 1
C(A,C,B,D)

3. C(A,B,C,D) = 1− C(B,A,C,D)

C(A,B,C,D) = C(B,A,D,C) = C(C,D,A,B) = C(D,C,B,A) = x
C(A,C,B,D) = C(C,A,D,B) = C(B,D,A,C) = C(D,B,C,A) = 1

x
C(A,B,D,C) = C(B,A,C,D) = C(D,C,A,B) = C(C,D,B,A) = 1− x
C(A,C,D,B) = C(C,A,B,D) = C(D,B,A,C) = C(B,D,C,A) = 1−x

x
C(A,D,B,C) = C(D,A,C,B) = C(B,C,A,D) = C(C,B,D,A) = 1

1−x
C(A,D,C,B) = C(D,A,B,C) = C(C,B,A,D) = C(B,C,D,A) = x

1−x
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Theorem 2.11. Given two different projective lines in RP2, we can choose 2 sets of 4 collinear points, A,
B, C, D and A’, B’, C’, D’ on each projective line. The cross ratio C(A,B,C,D) = C(A′, B′, C ′, D′) iff
∃ g ∈ PGL3(R) such that gA = A′, gB = B′, gC = C ′ and gD = D′

Proof. Let a and d be the respective vector representative of A and D and a’ and d’ be the respective vector
representative of A’ and D’. Let b and c be the vector representatives of B and C, whereby b and c can be
expressed as a linear combination of a and d. Also, let b’ and c’ be the respective position vector of B’ and
C’, whereby b’ and c’ can be expressed as a linear combination of a’ and d’.

(⇐) Let a =

a1a2
a3

, d =

d1d2
d3

. Since A, B, C, D are collinear, b =

(1− t)d1 + ta1
(1− t)d2 + ta2
(1− t)d3 + ta3

 and c =

(1− s)d1 + sa1
(1− s)d2 + sa2
(1− s)d3 + sa3

,

for some s, t ∈ R.

ac =
√

((1− s)(a1 − d1))2 + ((1− s)(a2 − d2))2 + ((1− s)(a3 − d3))2 = (1− s)ad

Similarly, ab = (1− t)ad, dc = sad, db = tad. So, the cross ratio C(A,B,C,D) = acdb
abdc

= (1−s)t
(1−t)s .

Since A’, B’, C’, D’ are collinear, b’ = (1− t′)d’ + ta’ and c’ = (1− s′)d’ + sa’, for some s′, t′ ∈ R.
Let g ∈ PGL3(R) be a projective transformation such that g·a = ja’ and g·d = kd’ for some j, k ∈ R.
g·c = m(1− s′)d’ + sa’ = (1− s) kd’ + s ja’, where m ∈ R.
=⇒ m(1− s′) = (1− s)k, ms′ = sj =⇒ (1− s) = m

k (1− s′), s = m
j (s′)

g·b = n(1− t′)d’ + ta’ = (1− t) kd’ + t ja’, where n ∈ R.
=⇒ n(1− t′) = (1− t)k, nt′ = tj =⇒ (1− t) = n

k (1− t′), t = n
j (t′)

Since the cross ratio of C(A′, B′, C ′, D′) = a′c′d′b′

a′b′d′c′
= (1−s′)t′

(1−t′)s′ , therefore

C(A,B,C,D) = acdb
abdc

= (1−s)t
(1−t)s =

m
k (1−s′)n

j (t′)
n
k (1−t′)m

j (s′) = a′c′d′b′

a′b′d′c′
= (1−s′)t′

(1−t′)s′ = C(A′, B′, C ′, D′)

(⇒) Let a, b, c, d be the vector representatives of A, B, C, D that lie on the same projective line. As be-
fore, there is some non-zero real numbers s,t so that b = ta + (1 − t)d, c = sa + (1 − s)d. The cross ratio

C(A,B,C,D) = acdb
abdc

= (1−s)t
(1−t)s .

The strategy is to find a projective transformation that sends A, B, C, D to A”, B”, C” and D”, with vector

representatives a” =

1
0
0

, b” =

 1
2
1
2
0

, c” =

 h
1− h

0

 and d” =

0
1
0

. For the same reasons, A’, B’, C’ and

D’ can also be mapped to A”, B”, C” and D” via a projective transformation, so there will be a composite
mapping from A, B, C and D to A’, B’, C’ and D’ respectively.

We can construct a g ∈ SL3(R), where g ·a =

 1−t
t
0
0

 and g ·d =

0
1
0

, since a and d are linearly independent.

The cross ratio C(A”, B”, C”, D”) = a”c”d”b”
a”b”d”c”

= (1−h)
h .

We assume that C(A,B,C,D) = C(A”, B”, C”, D”).

g·b = g(ta+ (1− t)d) =

(1− t)
(1− t)

0

, since b” =

 1
2
1
2
0

, and g·c = g(sa+ (1− s)d) =

 s (1−t)t
(1− s)

0

.

Let g ∈ PGL3(R) be the projective class of matrices containing ḡ ∈ SL3(R). g is the required projective

transformation, where g·A = A”, g·B = B”, g·D = D” and g·C = C”. Hence, C” =

 s
1−s

(1−t)
t

0
0

 =

 h
1−h
0
0

 = h
1− h

0

.

Remark 2.12. This defines Ω∗ ⊂ (RP2)∗ by {Ω∗ = [a, b, c] :
(
a b c

)xy
z

 6= 0,∀

xy
z

 ∈ Ω}.
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With the bijection between RP2 and (RP2)∗, 4 points and 1 line contained in RP2 can be expressed as 4 lines
intersecting at 1 point in (RP2)∗ and vice versa. The cross ratio for both geometrical structures is the same.

We can define a cross ratio on a pair of points in RP2 and a pair of lines in RP2 such that the two points do
not lie in the two lines.

Definition 2.13. Let A, B be two points in RP2, and X, Y be two projective lines in RP2 that do not contain
A, B. Let v, w be vector representatives of A, B respectively, and let α, β be linear functionals whose kernels

are X,Y respectively. Then define C(X,A,B, Y ) = α(w)β(v)
α(v)β(w) .

This does not depend on the choice of representatives α, β for the linear functionals and v, w for the vector
representatives and is a projective invariant.

Lemma 2.14. Let A, B, C, D be four points in RP2 that lie in a projective line. Let LA be a projective line
that contains A, but does not contain B, C, D. Similarly, let LD be a projective line that contains D but does
not contain A, B, C. Then C(A,B,C,D) = C(LA, B,C, LD).

Proof. Based on Theorem 2.11, we can normalise the vector representatives to those shown in Figure 4. By

using the the 4 vector representatives,

1
0
0

 ,

 s
1− s

0

 ,

 t
1− t

0

 ,

0
1
0

, C(A,B,C,D) = (1−s)t
(1−t)s . By using the

vectors

 s
1− s

0

 ,

 t
1− t

0

 and the linear maps (1, 0, 0) and (0, 1, 0), we can compute that C(LA, B,C, LD) =

(1−s)t
(1−t)s . Hence, we show that C(A,B,C,D) = C(LA, B,C, LD).

Figure 4: Illustration for cross ratio of 2 linear functional and 2 vector representative

2.6 Triple ratio

In this subsection, we want to define the triple ratio and explain some of its key features. This is an important
tool in projective geometry that will help us establish the parametrization of convex real projective structures
on a pair of pairs. The triple ratio is similar to cross ratio, whereby the triple ratio is a function that takes in
3 flags and outputs a unique number.

Definition 2.15 (Flag). Flag(R3) = {(p, l) ∈ RP2 × (RP2)∗ : l(p) = 0}. A flag F can be represented as a
tuple, (F (1), F (2)), where F (1) is a point on an affine chart in RP2 and F (2) is a projective line, which contains
F (1), on an affine chart in RP2.

Let (F1, F2, F3) be three flags such that F
(1)
i does not lie in F

(2)
j ∀ i 6= j, as shown in Figure 5.

Definition 2.16 (Triple ratio). For i=1,2,3, let vi be a vector representative of F
(1)
i and let αi be a linear

map whose kernel is F
(2)
i . The triple ratio of (F1, F2, F3) is given by T (F1, F2, F3) = α1(v2)α2(v3)α3(v1)

α1(v3)α3(v2)α2(v1)
.

10



Triple ratio does not depend on the choice of representatives αi for F
(2)
i and vi for F

(1)
i and is a projective

invariant.

Figure 5: Illustration for triple ratio

A key tool that we will use to prove Goldman’s parameterization is the notion of a positive n-tuple of flags.

Definition 2.17. Let (F1, ..., Fn) be a cyclically ordered n-tuple of flags in general position, for n ∈ Z.
(F1, F2, ..., Fn) is said to be positive if ∀Fi, Fj , Fk where i < j < k < i, the value of the triple ratio,

T (Fi, Fj , Fk) > 0 and ∀Fi, Fj , Fk, Fl where i < j < k < l < i, the cross ratio, C(F (2)
i , F

(1)
j , F

(1)
l , F

(1)
k +F

(1)
i ) <

0.

Lemma 2.18. The value of the triple ratio is positive ⇔ ∃ connected component of RP2\(F (2)
i ∪ F (2)

j ∪ F (2)
k )

that contains F
(1)
i , F

(1)
j , F

(1)
k in its boundary.

Figure 6: Cases where triple ratio is positive or negative

Proof. We normalise the flags on the projective lines and set the linear operator, as shown in Figure 12.
As the bottom projective line may vary, the dotted lines denote the value of α according to the projective
line. In Figure 7, the bottom projective line lies within the region of 0 < α < ∞. The value of the triple

ratio is

(
α 1 −1− α

)
1
0
0

(0 1 0
)

0
1
0

(1 0 0
)

1
1
1


(
α 1 −1− α

)
0
1
0

(1 0 0
)

1
0
0

(0 1 0
)

1
1
1


= α. So the triple ratio is positive. Furthermore,

there exists a connected component of RP2\(F (2)
i ∪ F (2)

j ∪ F (2)
k ) that contains F

(1)
i , F

(1)
j , F

(1)
k in its boundary.

However, if that projective line were to lie within the region −∞ < α < 0, the value of the triple ratio

would be negative and there does not exist a connected component of RP2\(F (2)
i ∪ F (2)

j ∪ F (2)
k ) that contains

F
(1)
i , F

(1)
j , F

(1)
k in its boundary.

11



Figure 7: Case where triple ratio is positive
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3 Properly convex RP2 structure on pair of pants

In this section, the goal is to parametrize the space of properly convex RP2 structures on a pair of pants.
Recall that we previously defined the set Ã and A as follows.
Let Ã denote the set of pairs (Ω, ρ), so that Ω ⊂ RP2 is properly convex, ρ : Γ→ PGL3(R) is a homomorphism,
and the following holds:

• ρ(Γ) ⊆ Aut(Ω),

• ρ(A), ρ(B), ρ(C) lie in Hyp+,

• An axis of ρ(A), ρ(B), ρ(C) lies in the boundary of Ω,

• ρ(A−) < ρ(A+) < ρ(B−) < ρ(B+) < ρ(C−) < ρ(C+) < ρ(A−) in the cyclic order on ∂Ω.

We denote A as Ã�PGL3(R), where g(Ω, ρ) = (gΩ, gρ(·)g−1) for some g ∈ PGL3(R).

Also, define B̃ to be the set {(H,A,B,C) : H ⊆ RP2 is a properly convex hexagon, A,B,C ∈ PGL3(R) such
that

• A · 41 = 42, B · 42 = 43, C · 43 = 41

• CBA = Id

• A,B,C are diagonalizable with positive eigenvalues.}

Figure 8: Illustration of 4 triangles on hexagon

Define B = B̃�PGL3(R), where g(H,A,B,C) = (g ·H, gAg−1, gBg−1, gCg−1) for some g ∈ PGL3(R).

Finally, define C to be {(λ1, τ1, λ2, τ2, λ3, τ3, s, t) : (λi, τi ∈ R), s, t ∈ R}.

Recall that the deformation space of convex real projective structures on a pair of pants is identified with A.
Thus, to prove Goldman’s parameterization, we need to establish a bijection between A and C. This will be
done in two steps. In Section 3.1, we give a bijection betwee B and C, and in Section 3.2, we give a bijection
between A and B.

3.1 Parameterization of convex hexagons

In this subsection, we establish a bijection between B and C.

We assign homogeneous coordinates to the hexagon, as shown in Figure 9.

The cross ratio is unique to the same 4 lines. Consider the point

0
1
0

, we can calculate C(L1, p1, p2, L2) , by

taking p1 as

1
0
0

, p2 as

0
0
1

, the two blue lines L1, L2 as shown in Figure 9. We can find 2 cross ratio in a

similar fashion. The calculation for one cross ratio will be shown for reference.
First, the intersections of the blue lines (extension of projective lines) and the orange line are found to be
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a30
1

 and

 1
0
c1

. As the 4 points are collinear, l

 1
0
c1

 = (1-s)

1
0
0

 + s

0
0
1

 and m

a30
1

 = (1-t)

1
0
0

 +

t

0
0
1

 for s, t, m and l ∈ R. The cross ratio ρ2 = s(1−t)
t(1−s) . From the linear combination of 4 collinear points,

c1 = s
1−s and a3 = 1−t

t . So
ρ2 = c1a3 (1)

Similarly, the other cross ratios can be computed to be

ρ1 = b3c2 (2)

ρ3 = a2b1 (3)

Figure 9: Finding cross ratio on hexagon

Now, we want to choose a representative hexagon in each equivalence class. As we have proven that we can
map any 4 points in general position to any other 4 points in general position, we can fix the coordinates of

the hexagon to

1
0
0

,

0
1
0

 and

0
0
1

 by projective transformation, as shown in Figure 10.

Figure 10: Geometrical interpretation of 2 hexagons
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Remark 3.1. If the blue hexagon ∼ the black hexagon, ∃γ ∈ PGL3(R) such that

γ

0
0
1

 =

0
0
1

 , γ
0

1
0

 =

0
1
0

 , γ
1

0
0

 =

1
0
0

 , γ
a′3b′3
−1

 =

a3b3
−1

 , γ
a′2−1
c′2

 =

a2−1
c2

 , γ
−1
b′1
c′1

 =

−1
b1
c1



From the first 3 equalities, it can be deduced that γ =

λ 0 0
0 µ 0
0 0 ν

.

Using the fourth equality as an example,λ 0 0
0 µ 0
0 0 ν

a′3b′3
−1

 =

a3b3
−1

 =⇒

λa′3µb′3
−ν

 =

a3b3
−1


By factoring out 1

λ ,
µ

λ
b′1 = b1,

ν

λ
c′1 = c1

Similarly,
λ

µ
a′2 = a2,

ν

µ
c′2 = c2,

λ

ν
a′3 = a3,

µ

ν
b′3 = b3

With this, one can verify that the two invariants are also projective invariants.

σ1 = a2b3c1 (4)

σ2 = a3b1c2 (5)

There is a relation where
ρ1ρ2ρ3 = σ1σ2

As we have proven that we can map any 4 points in general position to any other 4 points in general
position. This means that we can normalize any 4 points in general position. As we have normalized 3 points
previously, we can choose one more point to normalize. In this case, we choose to normalize our fourth point

to

2
2
1

. Therefore, a3 = 2 and b3 = 2.

This implies that a2 = σ1

ρ2
, b1 = ρ3ρ2

σ1
, c1 = ρ2

2 , c2 = ρ1
2 . Now, we define a parameter t, where t = σ1

ρ2
> 0.

This means that a3 = 2, b3 = 2, a2 = t, b1 = ρ3
t , c1 = ρ2

2 , c2 = ρ1
2 .

According to Figure 4, matrix A maps vectors1
0
0

 7→ α1

1
0
0

 ,
a2−1
c2

 7→ β1

0
1
0

 ,
0

0
1

 7→ γ1

a3b3
−1


Matrix B maps vectors 1

0
0

 7→ α2

−1
b1
c1

 ,
0

1
0

 7→ β2

0
1
0

 ,
a3b3
−1

 7→ γ2

0
0
1


Matrix C maps vectors −1

b1
c1

 7→ α3

1
0
0

 ,
0

1
0

 7→ β3

a2−1
c2

 ,
0

0
1

 7→ γ3

0
0
1



Remark 3.2. Given the 3 transformations A, B, C, we can deduce that matrix A takes the form

α1 ε1 γ1a3
0 ε2 γ1b3
0 ε3 −γ1

.

Notice that A maps

a2−1
c2

 7→ β1

0
1
0

, so ε3 = −γ1c2, ε1 = α2a2 + γ1a3c2 and ε2 = −β1 + γ1b3c2. Matrix B

and C can deduced in a similar fashion.
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Hence, A =

α1 α2a2 + γ1a3c2 γ1a3
0 −β1 + γ1b3c2 γ1b3
0 −γ1c2 −γ1

, B =

−α2 0 −α2a3
α2b1 β2 β2b3 + α2a3b1
α2c1 0 −γ2 + α2a3c1

 and C =

−α3 + β3a2b1 β3a2 0
−β3b1 −β3 0

γ3c1 + β3b1c2 β3c2 γ3

,

where α1, α2, α3, β1, β2, β3, γ1, γ2, γ3 > 0.

Also,
detA = α1β1γ1 = 1 (6)

detB = α2β2γ2 = 1 (7)

detC = α3β3γ3 = 1 (8)

It follows that CBA maps1
0
0

 7→ α1α2α3

1
0
0

 ,
a2−1
c2

 = β1β2β3

a2−1
c2

 ,
0

0
1

 7→ γ1γ2γ3

0
0
1


Thus, CBA = Id iff

α1α2α3 = β1β2β3 = γ1γ2γ3 = 1 (9)

We can then find the characteristic polynomial of A, B, C. The characteristic polynomial of A is
(x− α1)(x2 + (β1 + γ1 − γ1b3c2)x). Therefore,

λ(A) = λ1 = α1, τ(A) = τ1 = −β1 + γ1(ρ1 − 1) (10)

Similarly, we can find the characteristic polynomial of B and C to derive λ(B), τ(B), λ(C), τ(C).

λ(B) = λ2 = β2, τ(B) = τ2 = −γ2 + α2(ρ2 − 1) (11)

λ(C) = λ3 = γ3, τ(C) = τ3 = −α3 + β3(ρ3 − 1) (12)

Remark 3.3. It is difficult to calculate the eigenvalues directly, hence it is more appropriate to use the λ and
τ function to make the calculations easier.

Define s by the equation log(α2) = 1
2 log( λ3

λ1λ2
)− log(s). Define t = a2. Assign to the point (H,A,B,C) in B

the point (λ(A), τ(A), λ(B), τ(B), λ(C), τ(C), s, t). This defines a map from B to C.

Now, we will show that you can invert this map.
We can then take the logarithms of equations 9, 10, 11 and 12. By the way how we defined s, we get

log(γ2) =
1

2
log(

λ1
λ3λ2

)− log(s)

log(α3) =
1

2
log(

λ2
λ3λ1

)− log(s)

log(β3) =
1

2
log(

λ1
λ3λ2

) + log(s)

log(β1) =
1

2
log(

λ3
λ1λ2

)− log(s)

log(γ1) =
1

2
log(

λ2
λ3λ1

)− log(s)

This allows us to solve,

α1 = λ1, α2 =

√
λ3
λ2λ1

s−1, α3 =

√
λ2
λ3λ1

s

β1 =

√
λ3
λ2λ1

s, β2 = λ2, β3 =

√
λ1
λ2λ3

s−1

γ1 =

√
λ2
λ3λ1

s−1, γ2 =

√
λ1
λ2λ3

s, γ3 = λ3

Using the τ function in equation 10, 11, 12, we can get the following ρ expression by substituting the corre-
sponding variables.

ρ1 = 1 +

√
λ1λ3
λ2

τ1s+
λ3
λ2
s2
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ρ2 = 1 +

√
λ1λ2
λ3

τ2s+
λ1
λ3
s2

ρ3 = 1 +

√
λ2λ3
λ1

τ3s+
λ2
λ1
s2

Hence, the coordinates a2, a3, b1, b3, c1, c2 are

a2 = t, a3 = 2

b1 =
1

2
+

√
λ2λ3
λ1

τ3
s

t
+
λ2
λ1

s2

t
, b3 = 2

c1 =
1

2
+

1

2

√
λ2λ1
λ3

τ2s+
λ1
2λ3

s2, c2 =
1

2
+

1

2

√
λ3λ1
λ2

τ1s+
λ3
2λ2

s2

This calculation shows that we can recover (H,A,B,C) from the data (λ(A), τ(A), λ(B), τ(B), λ(C), τ(C), s,
t). In particular, the map from B to C defined above is a bijection.

3.2 Bijection from deformation space to convex hexagons

In this subsection, we want to establish a bijection between A and B. Observe that this is equivalent to
establishing a bijection between Ã and B̃.
We shall construct 2 functions Φ,Ψ, where Φ : Ã→ B̃ and Ψ : B̃ → Ã such that ΦΨ = Id = ΨΦ. This will
imply that Φ is a bijection.

First, we construct the function Φ. Given the pair (Ω, ρ) ∈ Ã, we can form a triangle in Ω by connecting the
repelling fixed points, ρ(A−), ρ(B−), ρ(C−).

Remark 3.4. The 3 respective points of the hexagon which remains invariant when A,B,C act on them
are actually the repelling fixed points. According to equation 10, 11 and 12, they correspond to the smallest
eigenvalues of A,B,C. Hence, we use the repelling fixed points to construct the triangle.

Lemma 3.5. ρ(A+) < ρ(C−) < ρ(B−) < ρ(AC+) < ρ(AC−) < ρ(A+) in the clockwise cyclic order on ∂Ω.
Furthermore, the line segment between ρ(AC−) and ρ(AC+) lies in ∂Ω.

Proof. We can transform the boundary by a transformation and connect the 3 new repelling fixed points,
ρ(AC−), ρ(CB−), ρ(BA−) to form 3 other triangles, as shown in Figure 11. As ρ(A+) is the attracting fixed
point, ρ(A) will transform ρ(C−) toward ρ(A+), so ρ(C−) < ρ(AC−) < ρ(A+) < ρ(C−) in the clockwise cyclic
order on ∂Ω. Notice that ρ(CBA) = Id, so ρ(A) = ρ(B−1)ρ(C−1). Hence, ρ(B−) < ρ(AC−) < ρ(C+) <
ρ(B−) in the clockwise cyclic order on ∂Ω. For the same reasons, ρ(B−) < ρ(AC+) < ρ(A+) < ρ(B−) in the
clockwise cyclic order on ∂Ω. Since the ρ(A) action on ∂Ω is continuous and bijective, so the lemma holds.

Figure 11: Construction of function Φ

By taking ρ(C−), ρ(BA−), ρ(B−), ρ(AC−), ρ(A−), ρ(CB−) as the vertices, we can obtain a hexagon.

Hence, we have constructed a map from (Ω, ρ)→ (H,A,B,C) such that A = ρ(A), B = ρ(B), C = ρ(C).

Lemma 3.6. The value of the cross ratio is negative iff F
(1)
j , F

(1)
l lies in different connected components of

F
(2)
i , F

(1)
k + F

(1)
i .
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Proof. Using Lemma 2.14 and property of projective invariance of cross ratio, we can normalise F
(1)
j , F

(1)
l , F

(2)
i , F

(1)
k +

F
(1)
i and get 4 points that lie in a projective line. Since the direction has to be chosen when calculating the

cross ratio, there will be an odd number of negative distances and positive distances, according to Subsection
2.5 Cross Ratio. Hence, the value of the cross ratio is negative.

Theorem 3.7. For n ∈ Z, (F1, ..., Fn) is positive and F1, ..., Fn are in general position iff one of the component

of RP2\(F (2)
1 ∪ F (2)

j ∪ ... ∪ F (2)
n ) is a properly convex n-sided polygon that contains F

(1)
1 , F

(1)
2 , ..., F

(1)
n in its

boundary in this order.

Proof. (⇒)
We prove this by induction. Let P(n) be the statement that if (F1, ..., Fn) is positive and F1, ..., Fn are in

general position then one of the component of RP2\(F (2)
1 ∪F

(2)
j ∪...∪F

(2)
n ) is a properly convex n-sided polygon

that contains F
(1)
1 , F

(1)
2 , ..., F

(1)
n in its boundary in this order for n ≥ 3.

For P(3), it is a consequence of Lemma 2.18.

We assume that P(k) holds, for some integer k ≥ 4.

We can check whether P(4) holds. First, we can normalise the vector representatives as shown in Figure 8.

We can check that the value of the triple ratio of F
(1)
i , F

(1)
j , F

(1)
k is positive, so F

(2)
j would only contain F

(1)
j .

Since (F
(1)
i , F

(1)
j , F

(1)
k , F

(1)
l ) is positive, the value of the cross ratio should be negative. By taking F

(2)
i and

F
(1)
k + F

(1)
i , F

(1)
j and F

(1)
l should lie in different connected component. Also, if we take F

(2)
k and F

(1)
k + F

(1)
i ,

F
(1)
j and F

(1)
l should lie in different connected component. Hence, we can deduce the position of F

(1)
l , which

is shown in Figure 12. We can also check that the value of the triple ratio of F
(1)
i , F

(1)
l , F

(1)
k is positive, hence

F
(2)
l would only contain F

(1)
l . There will then be a properly convex 4-sided polygon.

Figure 12: Illustration for base case

We can use similar argument to prove the nth case.

We can observe that if (F1, ..., Fn, Fn+1) is positive, then (F1, ..., Fn) is positive. Thus, we may apply the
inductive hypothesis to deduce that the n+1 sided polygon is a properly convex domain. So given a n-sided
properly convex polygon, we can construct a new side as shown in Figure 13. By Lemma 3.6, we deduce the

position of F
(1)
n+1 as C(F (2)

1 , F
(1)
2 , F

(1)
n+1, F

(1)
1 + F

(1)
n ) and C(F (2)

n , F
(1)
2 , F

(1)
n+1, F

(1)
1 + F

(1)
n ) are negative. Hence,

it can be deduced that F
(1)
n+1 is located on the red line, as shown in Figure 13. Also, by Lemma 2.18, we can

deduce the position of F
(2)
n+1 as T (F1, Fn, Fn+1) is positive. Hence, it can be deduced that F

(2)
n+1 will intersect

F
(2)
1 and F

(2)
n , as shown in Figure 13. Therefore, it can be deduced that the new domain would be a n+1

sided properly convex domain. It can be seen in Figure 13, where we removed the shaded region.
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Figure 13: Illustration for inductive step

(⇐)

Given a n-sided polygon, we can choose a point that lies in the interior of every edge of the polygon. We will
denote these points as our flags in a cylical order. We can then choose any 4 flags, Fi, Fj , Fk, Fl in the cylical

order. By Lemma 3.6, C(F (2)
i , F

(1)
j , F

(1)
l , F

(1)
k + F

(1)
i ) and C(F (2)

k , F
(1)
j , F

(1)
l , F

(1)
k + F

(1)
i ) will be negative.

Also, we can choose any 3 flags Fi, Fj , Fk in the given cylical order. By Lemma 2.18, T (Fi, Fj , Fk) will be
positive. Hence, this means that F1, ..., Fn on the edge of the polygon are in general position and (F1, ..., Fn)
is positive.

Corollary 3.8. Suppose F1, ..., Fn are in general position. Let M ⊆ R2 be a n-sided polygon. We enumerate
the vertices of M by p1, ..., pn in this cyclic order. We define a map that send the set of vertices in M to
Flag(Rn). We can choose a triangulation of M such that the vertices of the triangles are also vertices of M.
(F1, ..., Fn) is positive ⇔

• If pi, pj , pk are vertices of a triangle in M, then T (Fi, Fj , Fk) > 0,

• If pi, pj , pk and pl, pk, pi are adjacent triangle in M, then C(F (2)
i , F

(1)
j , F

(1)
l , F

(1)
k + F

(1)
i ) < 0.

Remark 3.9. If a domain is proper, any smaller region within the domain is still proper.

With Theorem 3.8, we can then construct the function Ψ and a nested sequence of hexagons, where
H1 ⊂ H2 ⊂ H3....

Our H1 is the starting hexagon. Given the Hi, we can define Hi+1 as follows: ∀ boundary edge h of Hi,
∃gh ∈ PGL3(R) such that gh · T1 or gh · T2 is a triangle that has h as an edge but does not lie in Hi. So Hi+1

is
⋃
h edges inHi

g ·T ∪Hi. By Corollary 3.9, we set the vertices of Hi as flags and choose a triangulation on Hi

such that the triangle created by transforming T1 or T2 will add on to the triangulation, as shown in Figure
14.
We can observe that the quadruple with vertices (F1, F2, Fn, Fn+1) are transformed from another quadruple

with vertices Fi, Fj , Fk, Fl within Hi. Since Hi is properly convex, so C(F (2)
i , F

(1)
j , F

(1)
l , F

(1)
k + F

(1)
i ) and

C(F (2)
k , F

(1)
j , F

(1)
l , F

(1)
k +F

(1)
i ) is negative. As cross ratio is projective invariant, C(F (2)

1 , F
(1)
2 , F

(1)
n+1, F

(1)
1 +F

(1)
n )

and C(F (2)
n , F

(1)
2 , F

(1)
n+1, F

(1)
1 + F

(1)
n ) must be negative. By Lemma 3.6, we can deduce that the vertex of the

new triangle must lie within F
(2)
1 and F

(2)
n , as shown in Figure 14.

We can observe that the triangle with vertices (F1, Fn, Fn+1) are transformed from another triangle with
vertices Fi, Fj , Fk within Hi. Since Hi is properly convex, so T (Fi, Fj , Fk) is positive. As triple ratio is

projective invariant, F1, Fn, Fn+1 must be negative. By Lemma 2.18, we can deduce that F
(2)
n+1 will intersect

F
(2)
1 and F

(2)
n , as shown in Figure 14.
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Figure 14: Construction of function Ψ

Hence, after a transformation, our H2 is a 12-sided properly convex polygon. After the second
transformation, the our H3 is 24-sided properly convex polygon. We can observe that the inner polygon is
expanding and the outer polygon is shrinking, to a point where both will converge to the same polygon. The
shrinking outer polygon explains the properness of the domain. As the initial outer polygon is proper, a
smaller outer polygon would also be proper. The expanding inner polygon explains the convexity of the
polygons. With the choice of any two points in the domain, we can keep applying the projective
transformation until both points lie in the union of the polygons. This means that the domain is convex. We
can observe points in the inner hexagon will approach the attracting fixed points ρ(A+), ρ(B+), ρ(C+) after
many transformations. With the convexity and the properness of the domain, the line segment
ρ(A−A+), ρ(B−B+) and ρ(C−C+) would lie on the boundary of the domain.

Figure 15: Construction of function Ψ

Therefore, we have established the function Φ and Ψ, thus found a bijection between Ã and B̃.
Hence, we have found a parametrization on convex real projective structure on a pair of pants.
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